Finite groups having centralizer commutator product property

Gülin Ercan

Received: 28 November 2014 / Accepted: 3 February 2015
© Springer-Verlag Italia 2015

Abstract

Let α be an automorphism of a finite group G and assume that $G=\{[g, \alpha]: g \in$ $G\} \cdot C_{G}(\alpha)$. We prove that the order of the subgroup $[G, \alpha]$ is bounded above by $n^{\log _{2}(n+1)}$ where n is the index of $C_{G}(\alpha)$ in G.

Keywords Automorphism • Commutator • Fixed point subgroup • Centralizer
Mathematics Subject Classification 20D10 - 20D15 • 20D45

1 Introduction

Let A be a finite group that acts on the finite group G. In the case where $(|G|,|A|)=1$, there are several very useful relations between the groups G and A, some of which are as follows: (i) $G=[G, A] \cdot C_{G}(A)$, (ii) $[G, A, A]=[G, A]$ and (iii) $C_{G / N}(A)=C_{G}(A) N / N$ for any A-invariant normal subgroup N of G. Almost all of the research papers studying this kind of action concerned with the situations where the fixed point subgroup $C_{G}(A)$ has a restricted structure. However, Parker and Quick [1] considered a dual situation by assuming that the index of $C_{G}(A)$ is bounded. As this assumption clearly gives no restriction to $C_{G}(A)$, they focused their attention on the group $[G, A]$ and proved that $|[G, A]| \leqslant n^{\log _{2}(n+1)}$ if $\left|G: C_{G}(A)\right| \leqslant n$.

We consider here a special noncoprime action in view of [1]:
Let α be an automorphism of the finite group G such that for every $x \in G, x=[g, \alpha] \cdot z$ for some $g \in G$ and $z \in C_{G}(\alpha)$.

In the literature a finite group G admitting such an automorphism α is called an $\alpha-C C P$ group where the acronym CCP stands for "centralizer commutator product". Lemma 2.1 below shows that nice relations indicated above which are valid in the case of a coprime action also survive in the setting of α-CCP groups. The study of $\alpha-\mathrm{CCP}$ groups was started

[^0]by Stein [2] who proved that the subgroup [G, α] is solvable. The goal of the present paper is to give an upper bound for the order of $[G, \alpha]$ in terms of the index of $C_{G}(\alpha)$ in G. Namely, we prove the following:

Theorem A Let G be an α-CCP group such that $\left|G: C_{G}(\alpha)\right| \leqslant n$. Then $|[G, \alpha]| \leqslant$ $n^{\log _{2}(n+1)}$.

An internal reformulation of Theorem A can be stated as
Theorem B Let H be a finite group containing an element x such that $H=\{[h, x]: h \in$ $H\} \cdot C_{H}(x)$. If $\left|H: C_{H}(x)\right| \leqslant n$ then $|[H, x]| \leqslant n^{\log _{2}(n+1)}$.

Theorem A is the α-CCP analogue of [1, TheoremA]. The key lemma in our proof is Lemma 3.1 which we obtain as the α-CCP analogue of [1, Lemma 2.1]. The rest of the paper contains the proof of Theorem A and some technical results pertaining to the proof of Theorem A; all of which are proven in a similar fashion as in the proofs of [1, Proposition 2.2], [1, Corollary 2.3] and [1, TheoremA] with obvious changes, namely using Lemma 3.1 instead of [1, Lemma 2.1]. For the sake of completeness we present a proof here for each of them.

In Sect. 2 we state and prove some preliminary facts about α-CCP groups. Section 3 is concerned with our key lemma, namely Lemma 3.1, and its consequences. We prove our main result Theorem A and its equivalent Theorem B in Sect. 4.

All groups are assumed to be finite. The notation and terminology are standard.

2 Preliminaries on α-CCP groups

Lemma 2.1 The following hold for any $\alpha-C C P$ group G.
(i) $G=[G, \alpha] \cdot C_{G}(\alpha)$ and $[G, \alpha, \alpha]=[G, \alpha]$. Furthermore $G=[G, \alpha] \times C_{G}(\alpha)$ whenever G is abelian.
(ii) Every α-invariant subgroup S of G is also an α-CCP group and we have $\{[x, \alpha]: x \in$ $S\}=\{[g, \alpha]: g \in G\} \cap S$.
(iii) G / N is an α-CCP group for any α-invariant normal subgroup N of G.
(iv) If $[g, \alpha]^{f} \in C_{G}(\alpha)$ for some f and g in G, then $g \in C_{G}(\alpha)$.
(v) $C_{G / N}(\alpha)=C_{G}(\alpha) N / N$ for any α-invariant normal subgroup N of G.
(vi) $\{[g, \alpha]: g \in G\}$ is a transversal to $C_{G}(\alpha)$. Furthermore α^{G} is a transversal to $C_{H}\left(\alpha^{a}\right)$ for any $a \in G$ in the semidirect product $H=G\langle\alpha\rangle$.

Proof This lemma gives almost the same information as in [2, Proposition 2.2] on an α-CCP group G. We need only to show that $G=[G, \alpha] \times C_{G}(\alpha)$ when G is abelian: Notice that $[G, \alpha]=\{[g, \alpha]: g \in G\}$ when G is abelian and also observe that for any $[g, \alpha] \in C_{G}(\alpha)$, we have $[g, \alpha]=1$ by Lemma 2.1(iv).

The following lemma is crucial in proving our key lemma Lemma 3.1.
Lemma 2.2 Let G be an α-CCP group and set $H=G\langle\alpha\rangle$. Then
(i) the map $f_{\alpha^{a}}: \alpha^{G} \longrightarrow \alpha^{G}$ defined by $f_{\alpha^{a}}\left(\alpha^{g}\right)=\left(\alpha^{a}\right)^{\alpha^{g}}$ is a bijection for any $a \in G$,
(ii) for any $X \leqslant H$ with $X \cap \alpha^{G} \neq \phi$ and for any $\alpha^{a} \in X$ we have

$$
\left(\alpha^{a}\right)^{X}=\left(\alpha^{a}\right)^{X \cap \alpha^{G}}=X \cap \alpha^{G} .
$$

Proof α^{G} is a transversal to $C_{H}\left(\alpha^{a}\right)$ by Lemma 2.1(vi). If g and h are elements of G such that $\left(\alpha^{a}\right)^{\alpha^{g}}=\left(\alpha^{a}\right)^{\alpha^{h}}$, then $\alpha^{g}\left(\alpha^{h}\right)^{-1} \in C_{H}\left(\alpha^{a}\right)$ and so $\alpha^{g}=\alpha^{h}$. This proves (i) since α^{G} is finite.

It is straightforward to verify that $\left(\alpha^{a}\right)^{X \cap \alpha^{G}} \subseteq\left(\alpha^{a}\right)^{X} \subseteq X \cap \alpha^{G}$. If $\alpha^{y} \in X \cap \alpha^{G}$, then $\alpha^{y}=\left(\alpha^{a}\right)^{\alpha^{h}}$ for some $h \in G$ by part (i). This yields $\alpha^{y} \in\left(\alpha^{a}\right)^{\alpha^{G}}$. Notice that $f_{\alpha^{a}}\left(X \cap \alpha^{G}\right) \subseteq X \cap \alpha^{G}$ as $\alpha^{a} \in X$, and so $f_{\alpha^{a}}\left(X \cap \alpha^{G}\right)=X \cap \alpha^{G}$ since $f_{\alpha^{a}}$ is a bijection. Then $\alpha^{h} \in X$ and hence $X \cap \alpha^{G} \subseteq\left(\alpha^{a}\right)^{X \cap \alpha^{G}}$ which establishes the claim (ii).

3 Some technical lemmas pertaining to the proof of Theorem A

The following results are modifications of Lemma 2.1, Proposition 2.2 and Corollary 2.3 in [1] for α-CCP groups.

Lemma 3.1 Let G be an α-CCP group and let $\mathcal{O}=\alpha^{G}$. If $I \subseteq \mathcal{O}$ and Θ is an orbit of $\langle I\rangle$ on \mathcal{O}, then $\langle I\rangle \leqslant\langle\Theta\rangle$. Furthermore if some member of Θ is not contained in $\langle I\rangle$, then $\langle I\rangle<\langle\Theta\rangle$.

Proof To ease the notation set $K=\langle I\rangle$ and let $\Theta=\left(\alpha^{x}\right)^{K}$. It should be noted that $K\langle\Theta\rangle$ is a subgroup of G because K normalizes $\langle\Theta\rangle$. Set now $L=K\langle\Theta\rangle$. Since $L \cap \alpha^{G} \neq \phi$ and $\alpha^{x} \in L$, we have

$$
\left(\alpha^{x}\right)^{L}=\left(\alpha^{x}\right)^{L \cap \alpha^{G}}=L \cap \alpha^{G}
$$

by Lemma 2.2(ii). Then, for any generator α^{y} of K, we have

$$
\alpha^{y} \in L \cap \alpha^{G}=\left(\alpha^{x}\right)^{K\langle\Theta\rangle} \subseteq\left\langle\left(\alpha^{x}\right)^{K}\right\rangle=\langle\Theta\rangle
$$

This completes the proof.
Lemma 3.2 When G is an α-CCP group the group $\left\langle\alpha^{G}\right\rangle$ can be generated by $\log _{2}\left(\frac{2(n+p-1)}{p}\right)$ conjugates of α where p is the smallest positive divisor of the order of α and $\left|G: C_{G}(\alpha)\right| \leqslant n$.

Proof We let $\mathcal{O}=\alpha^{G}$ and consider the action of $\langle\alpha\rangle$ on \mathcal{O} by conjugation. Suppose first that $\langle\alpha\rangle$ has a fixed point α^{x} which is different from α. Then $[\alpha, x] \in C_{G}(\alpha)$ and hence $[\alpha, x]=1$ by Lemma 2.1(iv). This contradiction shows that α is the only fixed point of $\langle\alpha\rangle$ in its action on \mathcal{O}.

Define $K_{0}=1, K_{1}=\langle\alpha\rangle$ and for $j>1, K_{j}=\left\langle K_{j-1}, \alpha_{j}\right\rangle$ where at each stage $\alpha_{j} \in \mathcal{O}$ is chosen to maximize the order of K_{j}. Since G is finite, there exists k such that $K_{k}=\left\langle\alpha^{G}\right\rangle$ and $K_{k-1} \neq\left\langle\alpha^{G}\right\rangle$. Now $\left\langle\alpha^{G}\right\rangle=\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$ where $\alpha_{1}=\alpha$. Fix $j \in\{1, \ldots, k\}$ and let $I=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{j}\right\}$. Now $K_{j}=\langle I\rangle$. Choose an orbit Θ of K_{j} with representative B where $B \not \leq K_{j}$. Then $K_{j}<\langle\Theta\rangle$ by Lemma 3.1. If Θ were also an orbit of K_{j-1}, then we would have

$$
K_{j}<\left\langle B^{K_{j}}\right\rangle=\left\langle B^{K_{j-1}}\right\rangle \leqslant\left\langle B, K_{j-1}\right\rangle
$$

contradicting the choice of α_{j}. Therefore Θ is a union of at least two orbits of K_{j-1} on \mathcal{O}. Notice also that $B \not \leq K_{i}$ for each $i=1, \ldots, j$. Thus Θ is a union of at least 2^{j-1} orbits of $\langle\alpha\rangle$ on \mathcal{O}, each of which has length at least p. Since $\alpha_{j} \leqslant K_{j}$ for $i \leqslant j$ we see that the set $\Omega=\left\{\alpha_{1}\right\} \cup\left\{\alpha_{2}^{K_{1}}\right\} \cup \ldots \cup\left\{\alpha_{i}{ }^{K_{i-1}}\right\}$ is contained in K_{j}. Therefore $\Omega \cap \alpha_{i+1} K_{i}$ is empty as
$\alpha_{i+1} \not \leq K_{i}$. Then $\mathcal{O} \supseteq\left\{\alpha_{1}\right\} \cup\left\{\alpha_{2}{ }^{K_{1}}\right\} \cup \ldots \cup\left\{\alpha_{k}{ }^{K_{k-1}}\right\}$ and the right hand side is a disjoint union. So

$$
n \geqslant|\mathcal{O}| \geqslant 1+p\left(1+2+\cdots+2^{k-2}\right)=1+p\left(2^{k-1}-1\right) .
$$

Consequently we have $k-1 \leqslant \log _{2}\left(\frac{n+p-1}{p}\right)$ as claimed.
Lemma 3.3 Let G be an α-CCP group. Suppose that G is a p-group for some prime p with $\left|G: C_{G}(\alpha)\right| \leqslant p^{m}$. Then $|[G, \alpha]| \leqslant p^{\frac{m^{2}+m}{2}}$.

Proof Firstly we handle the case where G is of class at most two by induction on the order of G. By Lemma 2.1(i) we have $[G, \alpha]=[G, \alpha, \alpha]$ and $G / G^{\prime}=\left[G / G^{\prime}, \alpha\right] \times C_{G / G^{\prime}}(\alpha)$. Then $G=[G, \alpha]$ by induction and hence $C_{G / G^{\prime}}(\alpha)=1$, that is $C_{G}(\alpha) \leqslant G^{\prime}$. Thus $\left|G: G^{\prime}\right| \leqslant p^{m}$. In this case the proof is in a similar fashion as in the proof of [1, Proposition 3.1]. For the sake of completeness we present it here. Let the abelian group $\bar{G}=G / G^{\prime}$ be the direct product of nontrivial cyclic subgroups $\left\langle\bar{x}_{i}\right\rangle$ for $i=1, \ldots, d$ where $\left|\bar{x}_{i}\right|=p^{m_{i}}$. We have $G=\left\langle x_{1}, \ldots, x_{d}\right\rangle$ since $G^{\prime} \leqslant \Phi(G)$. It is straightforward now to verify that $G^{\prime}=\left\langle\left[x_{j}, x_{i}\right]: 1 \leqslant i<j \leqslant d\right\rangle$ since $G^{\prime} \leqslant Z(G)$. Set $H_{i}=\left\langle x_{i+1}, \ldots, x_{d}, G^{\prime}\right\rangle$. Then $G^{\prime}=\prod_{i=1}^{d-1}\left[H_{i}, x_{i}\right]$ for $i=1, \ldots, d-1$. We have $\left|\left[H_{i}, x_{i}\right]\right| \leqslant\left|H_{i} / G^{\prime}\right|=p^{m_{i+1}+\cdots+m_{d}}$ due to the fact that $h \longmapsto\left[h, x_{i}\right]$ defines a homomorphism from H_{i} / G^{\prime} onto [$\left.H_{i}, x_{i}\right]$. Thus $|G| \leqslant \prod_{i=1}^{d} p^{m_{i}} \prod_{i=1}^{d-1}\left|\left[H_{i}, x_{i}\right]\right| \leqslant p^{M}$ where $M=\sum_{i=1}^{d} i m_{i}$. It can be proven by induction on d that $M \leqslant\left(m^{2}+m\right) / 2$. This completes the proof when G is of class at most two.

Suppose now that G has class c with $c \geqslant 3$. Again assume $|G|$ minimal, therefore $G=[G, \alpha]$. The proof in this case is in a very similar fashion as in the proof of $[1$, Theorem B]. Note that $\gamma_{c-1}(G)$ is abelian. We also observe that $\left[\gamma_{c-1}(G), \alpha\right] \neq 1$, because otherwise $\left[\gamma_{c-1}(G), \alpha, G\right]=1=\left[G, \gamma_{c-1}(G), \alpha\right]$ and hence $\gamma_{c-1}(G) \leqslant Z(G)$ by the Three Subgroup Lemma. Let now N be of minimal order among all normal α-invariant subgroups of G contained in $\gamma_{c-1}(G)$ and are not centralized by α. Let $\left|G / N: C_{G / N}(\alpha)\right|=p^{r}$. As $C_{G / N}(\alpha)=C_{G}(\alpha) N / N$ by Lemma 2.1(v) we have $\left|G: C_{G}(\alpha) N\right|=p^{r}$. Note that G / N and N are both α-CCP groups by Lemma 2.1(i). It follows by induction that $|[G / N, \alpha]| \leqslant p^{\frac{r^{2}+r}{2}}$. As $[G / N, \alpha]=[G, \alpha] N / N=G / N$ we have $|G / N| \leqslant p^{\frac{r^{2}+r}{2}}$. Let now $\left|N: C_{N}(\alpha)\right|=p^{s}$. Since N is abelian we have $N=[N, \alpha] \times C_{N}(\alpha)$ and so $|[N, \alpha]|=p^{s}$. It remains to bound $|N /[N, \alpha]|$ suitably. As N is contained in $\gamma_{c-1}(G)$ we have $[N, G] \leqslant \gamma_{c}(G) \leqslant Z(G)$. Hence for $g \in G$ the map $x \mapsto[x, g]$ for $x \in N$, is a homomorphism with kernel $C_{N}(g)$, in particular $[N, G]$ lies in the kernel and $\left|N: C_{N}(g)\right|=|[N, g]|$. Set now $H=[N, \alpha][N, G]$. Observe that $1 \neq[N, \alpha]=[N, \alpha, \alpha] \leqslant[H, \alpha]$ by Lemma 2.1(i). It follows by minimality of N that $H=N$. Thus

$$
|[N, g]|=\left|N: C_{N}(g)\right| \leqslant|N:[N, G]|=|[N, \alpha][N, G]:[N, G]| \leqslant|[N, \alpha]| .
$$

We also observe that $\left[N, G^{\prime}\right]=1$ by the three subgroup Lemma as $[N, G, G]=1=$ $[G, N, G]$. This gives that $N C_{G}(\alpha) \leqslant G^{\prime} \leqslant C_{G}(N)$. As $N \leqslant \gamma_{c-1}(G) \leqslant G^{\prime}$ we get $N C_{G}(\alpha) \leqslant G^{\prime} \leqslant C_{G}(N)$. Therefore $\left|G: C_{G}(N)\right| \leqslant p^{r}$. Let Y be a minimal generating set for G modulo $C_{G}(N)$. Then $|Y| \leqslant r$. Since $[N, G] \leqslant Z(G)$ we also see that $[N, G]=$ $\prod_{y \in Y}[N, y]$. Thus $|[N, G]| \leqslant\left.|[N, \alpha]|\right|^{|Y|} \leqslant p^{s r}$. So $|N|=|[N, G][N, \alpha]| \leqslant p^{s(r+1)}$ whence $|G|=|G / N| \cdot|N| \leqslant p^{\left(r^{2}+r\right)+s(r+1)}$. This establishes the claim as

$$
\begin{array}{r}
1 / 2\left(\left(r^{2}+r\right)+s(r+1)\right) \leqslant 1 / 2\left(r^{2}+r\right)+1 / 2\left(s^{2}+s\right)+s r \\
\leqslant 1 / 2\left((r+s)^{2}+r+s\right) \leqslant 1 / 2\left(m^{2}+m\right) .
\end{array}
$$

4 Proof of the main results

In this section we present a proof of Theorem A and deduce Theorem B.
Proof of Theorem A Let G be a minimal counterexample to the theorem. Then $G=[G, \alpha]$ by induction as $[G, \alpha]=[G, \alpha, \alpha]$ by Lemma 2.1(i). As a consequence $C_{G}(\alpha) \leqslant G^{\prime}$, and G is nonabelian. The main result of [2] gives that the group G is solvable and hence $F(G) \neq 1$. If $[F(G), \alpha]=1$, then $G \leqslant C_{G}(F(G))=Z(F(G))$ by the Three Subgroup Lemma, which is a contradiction as G is nonabelian. Thus $[F(G), \alpha] \neq 1$ and hence there is a prime p dividing $|F(G)|$ such that $\left[O_{p}(G), \alpha\right] \neq 1$. Notice that if $\left[Z_{2}\left(O_{p}(G)\right), \alpha\right]=1$, then $Z_{2}\left(O_{p}(G)\right) \leqslant Z(G)$ by the Three Subgroup Lemma as $[G, \alpha]=G$. This forces $O_{p}(G)=Z_{2}\left(O_{p}(G)\right)=Z\left(O_{p}(G)\right)$ which contradicts the fact that $\left[O_{p}(G), \alpha\right] \neq 1$. Let Q be minimal element of the set $\{S: S$ is a normal α-invariant subgroup of G which is contained in $Z_{2}\left(O_{p}(G)\right)$ such that $\left.[S, \alpha] \neq 1\right\}$. Clearly $\left[Q^{\prime}, \alpha\right]=1$ by the minimality of Q and so $Q^{\prime} \leqslant Z(G)$ by the Three Subgroup Lemma. Set now $Q_{0}=\left\langle[Q, \alpha]^{G}\right\rangle$. Note that both Q and $|G / Q|$ are α-CCP groups. So we have $[Q, \alpha]=[Q, \alpha, \alpha]$ by Lemma 2.1(i). Thus $1 \neq[[Q, \alpha]] \leqslant\left[Q_{0}, \alpha\right]$ and hence $Q=Q_{0}$ by the minimality of Q. Now $\left|Q C_{G}(\alpha): C_{G}(\alpha)\right|=\left|Q: C_{Q}(\alpha)\right|=p^{m}$ for some m. Let $\left|G: Q C_{G}(\alpha)\right|=r$. Then $r \leqslant \frac{n}{p^{m}}$. We observe by Lemma 3.3 that $|[Q, \alpha]| \leqslant p^{\frac{m^{2}+m}{2}}$. Set $R=C_{[Q, \alpha]}(\alpha)$. Then $R \leqslant[Q, \alpha]^{\prime} \leqslant Q^{\prime}$ and hence $R \leqslant Z(G)$. Now

$$
|[Q, \alpha] / R|=\left|[Q, \alpha] C_{Q}(\alpha): C_{Q}(\alpha)\right|=\left|Q: C_{Q}(\alpha)\right|=p^{m}
$$

So $|R|=\frac{|[Q, \alpha]|}{p^{m}} \leqslant p^{\frac{m^{2}-m}{2}}$. It remains to bound $|G / R|$ suitably.
Set $\bar{G}=G / R$. The group \bar{Q} is the product of at most $\log _{2}(r+1)$ of the conjugates of [$\bar{Q}, \alpha]$ in \bar{G} : To see this let $H=G \rtimes\langle\alpha\rangle$. Note that $Q \rtimes H$ and $C_{G}(\alpha)\langle\alpha\rangle Q \leqslant N_{H}(Q\langle\alpha\rangle)$. Set $\tilde{H}=H / Q$. Now $\left|\tilde{H}: N_{\tilde{H}}(\langle\tilde{\alpha}\rangle)\right| \leqslant\left|H: Q\langle\alpha\rangle C_{G}(\alpha)\right|=r$. By Lemma $3.2\left\langle\langle\tilde{\alpha}\rangle^{\tilde{H}}\right\rangle$ can be generated by at most $k=\log _{2}(r+1)$ conjugates of $\langle\tilde{\alpha}\rangle$. That is $\left\langle(\langle\tilde{\alpha}\rangle)^{\tilde{H}}\right\rangle=\left\langle\tilde{\alpha_{1}}, \ldots, \tilde{\alpha_{k}}\right\rangle$ where each α_{i} is a conjugate of α and $\alpha_{1}=\alpha$. Note that $H=[G, \alpha]\langle\alpha\rangle=\left\langle\alpha^{H}\right\rangle C_{G}(\alpha)=$ $M Q C_{G}(\alpha)$ where $M=\left\langle\alpha_{1}, \ldots, \alpha_{k}\right\rangle C_{G}(\alpha)$. Therefore

$$
\left\langle[Q, \alpha]^{G}\right\rangle=\left\langle[Q, \alpha]^{M}\right\rangle=[Q, \alpha][Q, \alpha, M] \leqslant[Q, M]=\prod_{i=1}^{k}\left[Q, \alpha_{i}\right] .
$$

We are now ready to complete the proof of Theorem A. By the above paragraph we have $|\bar{Q}|=\left|\left\langle[\bar{Q}, \alpha]^{\bar{G}}\right\rangle\right| \leqslant|[\bar{Q}, \alpha]|^{k}=p^{m k}$ and so $|Q| \leqslant p^{m k+\left(\frac{m^{2}-m}{2}\right)}$. Notice that $|G / Q| \leqslant r^{k}$ by induction. Thus

$$
|G|=|G / Q \| Q| \leqslant r^{k} p^{m k+\frac{m^{2}-m}{2}}=r^{k}\left(p^{m}\right)^{k+\frac{m-1}{2}} \leqslant r^{k}\left(p^{m}\right)^{\log _{2}(n+1)} \leqslant n^{\log _{2}(n+1)}
$$

This contradiction completes the proof of Theorem A.
Remark 4.1 As indicated in the introduction one can reformulate Theorem A as Theorem B. Their equivalence can be easily seen as follows:

Suppose that Theorem A is true. Set $H=G \rtimes\langle\alpha\rangle$ and $x=\alpha$ in H. Then $[G, \alpha]=[H, x]$ and $\{[g, \alpha]: g \in G\}=\{[h, x]: h \in H\}$ and $\left|G: C_{G}(\alpha)\right|=\left|H: C_{H}(x)\right|=n$. Therefore $|[G, \alpha]|=\mid[H, x] \leqslant n^{\log _{2}(n+1)}$ by Theorem A. Conversely suppose that Theorem B is true and let H be a finite group containing an element x such that $H=\{[h, x]: h \in H\} C_{H}(x)$ holds. Set $G=H$ and let α denote the inner automorphism of G induced by x. Then by applying Theorem B we have $|[H, x]| \leqslant n^{\log _{2}(n+1)}$ as desired.

Acknowledgments The author thanks the referee for his/her careful reading and some corrections.

References

1. Parker, C., Quick, M.: Coprime automorphisms and their commutators. J. Algebra 244, 260-272 (2001)
2. Stein, A.: A conjugacy class as a transversal in a finite group. J. Algebra 239, 365-390 (2001)

[^0]: G. Ercan (\boxtimes)

 Department of Mathematics, Middle East Technical University, Ankara, Turkey e-mail: ercan@metu.edu.tr

